If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2-13z=5
We move all terms to the left:
6z^2-13z-(5)=0
a = 6; b = -13; c = -5;
Δ = b2-4ac
Δ = -132-4·6·(-5)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-17}{2*6}=\frac{-4}{12} =-1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+17}{2*6}=\frac{30}{12} =2+1/2 $
| -17+2/3x=-29+2x | | 2/3x-17=2x-29 | | 2/3x-17=2x-29x | | 0.03x+0.08(9000-x)=350 | | 0.08x+0.12(1000-x)=104 | | 3u+8=-3 | | 2x/3+5=10 | | x-17=121 | | X^2-64x-400=0 | | (2y-6)(y^2-3y-18)=0 | | X+2/x-2=73 | | 6(10-4x)=45-5(4x+1) | | 2(x+3)+2(x-3)=54 | | 9x+15+6x=4 | | 5x^2+16x+1=0 | | 5(c+3)=4(2c-5) | | 37=-5-11b | | (2x+1)(x+1)=60 | | 0.5d=0.1d= | | 4-8x=4x | | 72=-6p-(-3) | | b+18=20 | | 5(p+8=75) | | 0=16(-x^2+4+5) | | 80=-16x^2+64x+80 | | -80=16x^2+64x+80 | | x=-16*1.25^2+64*1.25+80 | | x=-16*0^2+64*0+80 | | -8=t2-8t+7 | | -8=t^2-8t+7 | | x=-1680^2+64*0+80 | | 7d+5=40 |